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Rheological chaos in a scalar shear-thickening model
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We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in

which the shear stresss is driven at a constant shear rateġ and relaxes by two parallel decay processes:
a nonlinear decay at a nonmonotonic rateR(s1) and a linear decay at ratels2. Here s1,2(t)
5t1,2

21*0
t s(t8)exp@2(t2t8)/t1,2#dt8 are two retarded stresses. For suitable parameters, the steady state flow

curve is monotonic but unstable; this arises whent2.t1 and 0.R8(s).2l so that monotonicity is restored
only through the strongly retarded term~which might model a slow evolution of the material structure under
stress!. Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not
chaos, persists even for the caset1→0. A similar generic mechanism might also arise in shear thinning
systems and in some banded flows.
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Rheochaos can be defined as the occurrence of ma
scopic chaos@1# in a viscoelastic material at a negligib
Reynolds number. With the neglect of inertia that this i
plies, the nonlinearity must come not from the advection
momentum~as in the Navier-Stokes turbulence! but from the
constitutive behavior of the material, which may inclu
strong memory effects. Likewise, for the chaos to be mac
scopically observable~for example in time series data on th
stress measured at a fixed strain rate, or vice versa, in a
sample! a mechanism must be present that goes beyond
microscale chaos known to be present in, e.g., collo
Stokes flow@2#.

Strong candidates for rheochaos include micellar mat
als@3#, dense lamellar phases@4#, and also dense suspensio
where erratic stress response at fixed strain rate~or vice
versa! is widespread but poorly documented~see, e.g., Ref.
@5#!. It is not yet clear whether spatial as well as tempo
inhomogeneity is present for all instances of rheochaos,
if so to what extent. This could range from a shear-ban
flow in which the interface between the bands of the fast
slow flowing materials is unsteady in time~as suspected in
micelles @3,6#! through to fully developed ‘‘elastic turbu
lence’’ as recently reported in polymer solutions near
overlap threshold@7#. Spatial inhomogeneities are als
known to occur in shear-thickening colloid solutions@5,8#.
However, the closely related phenomenon of director ch
in sheared nematics has been studied theoretically and
not seem to require spatial inhomogeneity@9#. In the present
state of understanding, a theoretical search for temp
rheochaos in spatially homogenous models remains justi

Recent work by the authors has studied the onset of t
poral instability in spatially homogeneous mesoscopic m
els of the shear-thickening type@10#. One interesting predic
tion was that such instability could arise in a system wh
the steady state flow curves(ġ) is monotonic@10#. This
contrasts with the conventional instability to spatial inhom
geneity in the form of shear bands: this is always associa
with regions of negative slope on the flow curve@11–13#.
The mesoscopic models of@10# are not fully tensorial but
work with a single~spatially uniform! component of each o
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the stress and strain rate tensors (s andġ); nonetheless they
contain an infinite number of degrees of freedom, cor
sponding to the distribution of local strain variables for d
ferent mesoscopic elements. This makes them comple
analyze.

In this paper we propose closely related but much simp
models in which there is only one degree of freedom~the
shear stresss) whose time evolution at constant strain rateġ
is governed by a simple constitutive equation with retard
and nonlinear features. The simplest such model combin
nonlinear instantaneous relaxation rate for stress~chosen
nonmonotonic! with a linear but retarded relaxation. For
single exponential retardation kernel, its dynamics can
completely understood: it shows spontaneous oscillation
region of the flow curve with a positive slope, but no cha
This is qualitatively like the mesoscopic model of Ref.@10#
~although that model exhibits oscillations at a constant
posed stress rather than strain rate!. In particular, the insta-
bility is associated with a negative slope on the ‘‘bare’’ flo
curve ~before the retarded term is added!. A second, similar
model, in which the nonlinear relaxation is itself delaye
shows chaos.

We first examine the simplest model alluded to abo
This is defined by the equation

ṡ~ t !5ġ2R~s!2ls2 , ~1!

where s2(t)5*2`
t M2(t2t8)s(t8) dt8 is a retarded stres

and M2(t) is a memory kernel whose integral is unity. Th
first term on the right-hand side of this equation means th
in the absence of relaxation, stress increases linearly w
straining ~the elastic constant is set to unity!—a Hookean
solid. The second term describes the instantaneous deca
stress at rateR(s), for example, through ‘‘hops’’ or plastic
rearrangement of mesoscopic elements~returning these to an
unstrained state! with jump rateR/s. Unlike in the meso-
scopic models of Ref.@10#, no attempt is made to track th
dynamics of individual elements. The third term is also
decay term, but describes retarded relaxation. This could
resent ‘‘delayed jumps’’ which, perhaps because they invo
©2002 The American Physical Society02-1
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a cooperative motion of many elements, take a distribut
of finite times to accomplish~governed by the kernelM2).
More generally, a retarded term could represent some o
slow structural reorganization of the material in response
stress.

For example, one could have a model of instantane
jumps but with a ‘‘fluidity’’ or jump rate that itself adapt
slowly to stress@14#. In this context it might be more natura
to have a nonlinear retarded term such as

ṡ5ġ2R~s!2ls2s. ~2!

However, this gives qualitatively the same instability as d
scribed below for Eq.~1! @15#; we retain the linear version
for simplicity, below.

Solving Eq.~1! in the steady state gives immediately t
flow curve, or rather its inverse,

ġ5R~s!1ls. ~3!

The interesting case is whenR(s) is nonmonotonic but
R(s)1ls is monotonic. Then the flow curve is monotoni
but only because of the retarded contribution to the ju
rate. One might suspect that a sufficiently sluggish retar
contribution might fail to correct the underlying instability i
the region whereR8(s) is negative: over short timescales th
system appears to be unstable with respect to shear ban
but at long time scales it is not. Here, the time scales
measured relative to the strain rate at whichR(s) in Eq. ~3!
first becomes nonmonotonic; we choose units so that th
O(1).

We analyze the case of a single exponential kernel,M2

5t2
21 exp@2(t2t8)/t2#. As is easily checked, for this kerne

Eq. ~1! can be replaced by a differential equation of seco
order. Differentiating Eq.~1! with respect tot, and noting
that ṡ25(s2s2)/t2, we obtain immediately

s̈52~]V/]s! 2j~s!ṡ, ~4!

which effectively describes a particle of unit mass in a o
dimensional potentialV with damping constantj. Here

t2V~s!5E
0

s

R~s8!ds81ls2/22ġs, ~5!

j~s!5R8~s!11/t2 . ~6!

As ġ is varied, the steady state flow curves(ġ), as given by
Eq. ~3!, is recovered as the solution ofV8(s50). The sta-
bility of the steady state solution requires that two furth
conditions are satisfied. The first isV9(s).0 ~so that the
effective potential has a minimum not a maximum!. This is
equivalent tods/dġ.0 which is the usual criterion to avoi
shear banding. However, the stability also requires thatj(s)
is positive at the minimum ofV. WhenR8(s) in Eq. ~6! is
negative, this is only satisfied if the retardation timet2 is
sufficiently short. When not satisfied, one has antidampin
the minimum of V so that small velocity fluctuations ar
amplified; this is reminiscent of a van der Pol oscillator@16#.
Velocity fluctuations will grow until a limit cycle is reache
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in which the positive damping at large amplitudes balan
the antidamping near the minimum.

Examples of the ‘‘bare’’ flow curve, the final flow curve
and the region of the instability are shown in Fig. 1~a!. Fig-
ure 1~b! shows a typical time series of the stress just insi
and well within, the unstable region. The limits of this r
gion,sc

6 , are Hopf bifurcation points where there is an ons
of finite frequency sinusoidal oscillations with an amplitu
varying asuġ2ġcu1/2.

Our choice of an exponential kernel is nongeneric: m
integral kernels are not equivalent to any finite-order diff
ential equation@16#. However, the above argument gives
generic mechanism of instability. If the flow curve is mon
tonic only because of a retarded term@2l,R8(s),0#,
then temporal instability survives if the retardation time
too long. Its presence does not depend on details of the
nel, but what it leads to might do so: in particular, chaos
impossible in a second-order system@16# such as Eq.~4!.
However, our finding of spontaneous oscillation but n
chaos appears to be structurally stable: we were unabl

FIG. 1. ~a! The bare flow curveġ5R(s) ~light line! and the
final flow curve~heavy line! in the model of Eq.~1!. Parameters are
l520, t2510, andR(s)50.6s523.3s315s. The region of in-
stability sc

2,s,sc
1 is shown, wheresc

2'0.799 andsc
1'1.631,

corresponding toġc
2'18.487 andġc

1'33.382. Note that for our
choice of parameters,sc

6 almost coincide with the turning points o
R. ~b! Stress time series~same parameter values! at ~from bottom to

top! ġ518.49, ġ530, andġ533.38.
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FIG. 2. ~a! Upper plot: the period of stable orbits as a function of strain rateġ around the unstable region of the flow curve of Fig. 1, f
the model of Eq.~7! with t150.5 and the other parameters as in Fig. 1. Lower plot: Lyapunov exponents for trajectories, showingl1.0

5l2 in the chaotic regions.~b! Orbits projected onto the (s2 ,s) plane for variousġ showing the period-doubling cascade with periods

2, 4, 8, 16, and 32.~c! The strange attractor in (s1 ,s2 ,s) space forġ520 over a time period 53102,t,103 ~arb. units!.
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find chaos withM2 taken as the sum of two exponentia
~which gives a third-order dynamical system for which cha
is allowed!.

In that case, what needs to be added to the model of
~1! to give temporal chaos rather than just spontaneous
cillation? So far, the simplest variant we have found th
definitely shows chaos is the following:

ṡ~ t !5ġ2R~s1!2ls2 , ~7!

where the stress in the nonlinear term,s1, is now also re-
tarded. The steady state flow curve is the same as that fo
~1!. For simplicity, we choose a single exponential kern
here too:s1(t)5*0

t s(t8)t1
21 exp@2(t2t8)/t1# dt8. To main-

tain continuity of interpretation with the simpler version
the model, we chooset1&1!t2. We study the situation
02520
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where the monotonicity of the flow curve@still given by Eq.
~3!# is restored only via the more retarded one of the t
relaxation terms. While there is no longer a simple interp
tation in terms of an effective potential or a damping fun
tion, the generic instability of the previous model remain
But now, within the unstable region, we find a period do
bling cascade leading to chaos. Figure 2~a! shows, for a
specified set of model parameters, the period and Lyapu

exponentsl1>l2>l3 as a function ofġ (l1.0 means that
nearby trajectories exponentially separate@17#!; Fig. 2~b!
shows a series of period-doubling orbits in the (s2 ,s) plane
and Fig. 2~c! shows the strange attractor in (s1 ,s2 ,s)
space. Its Lyapunov dimensionDLyap521l1 /ul3u varies
with the parameters but is slightly greater than 2, typica
2.0,DLyap,2.1.
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Physically it is not clear to us yet why the retardation
the nonlinear term~as well as the linear one! seems neces
sary to get chaos out of Eq.~7!; presumably, however, thi
adds something which is missing even from the mesosc
model of Ref.@10# ~where chaos remained absent despite
infinite order of the system!. Attempts to associate the re
tarded stresses in this model with, say, higher moments o
distribution of local strains in the model of Ref.@10# ~where
the first moment is the instantaneous stress! have so far
proved unconvincing. A more detailed study is left for futu
work.

We conclude with a broader discussion. The key idea
that of a flow curve~for spatially homogeneous states! whose
monotonicity is rescued only by a retarded contribution;
too much retarded, this does not restore temporal stab
because the system continues to amplify perturbations
short time scales. Although the equations involved will lo
rather different, very similar physics could arise in materi
of the shear-thinning type where shear banding is pre
@6,12,18# or narrowly avoided@19#. It might be very interest-
ing to look more closely in shear-thinning micellar syste
where, by varying density and temperature, one can arra
a material whose flow curve is only just monotonic@18#.
Similar studies in colloids close to the transition from co
tinuous to discontinuous shear thickening@5# would also be
valuable, although this field is a lot less developed exp
mentally.

Quite similar equations, but with different variables a
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interpretation, might describe a preexisting shear-ban
flow, whose stability remains unclear in many cases@20#.
The simplest scenario would ascribe a single coordinate
describe the bands~e.g., the position of the interface betwee
them, assumed flat! and seek to develop equations for i
time evolution. Chaotic behavior of such an interface, rat
than of a spatially homogeneous stress, might be the ex
nation of rheochaos seen in various micellar systems@3#. In
the case where one of the bands is a static gel, empir
models such as those proposed in Refs.@21# have met with
some success at explaining the observed~though not entirely
steady@22#! dependence of stress on the strain rate wh
averaged across such a banded flow. Such models inv
equations such asḣ5 f (h)21/s whereh is the width of a
shear band,f is a nonlinear term arising from the differenc
in concentrations of the two bands, ands is the stress@21#.
Under controlled strain rate conditions~say! 1/s is linear in
h and the equation is not dissimilar to Eq.~1! without retar-
dation. If a slow process can be identified~possibly concen-
tration equilibration!, then a retarded version of this type o
equation could share the generic instability of the mod
discussed above.
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